Skip to main content
Log in

Multiphysics modeling of electric-swing adsorption system with in-vessel condensation

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Mathematical modeling of an Electric-Swing Adsorption (ESA) system (adsorption cycle with electrothermal desorption step, performed by direct heating of the adsorbent particles by passing electric current through them), with annular, radial-flow, cartridge-type fixed-bed and in-vessel condensation, is performed by using Comsol Multiphysics™ software. Three multiphysics models are built, in order to describe three stages of a compete ESA cycle: adsorption, electrothermal desorption before the start of condensation and electrothermal desorption with in-vessel condensation. In order to describe the complete ESA cycle the models for the three stages are integrated, by using a combination of Comsol Multiphysics™ and Matlab™. The models were successfully used for simulation of separate stages of the process and of the complete ESA cycles, as well as for investigation of the influences of the main operational parameters on the process performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a (m2/m3):

Specific surface area

b (K−1):

Temperature coefficient of the bed electrical resistivity

C (mol/mol):

Adsorbate concentration in the gas phase

C *(mol/mol):

Adsorbate concentration in the gas phase in equilibrium with the solid phase

C break (mol/mol):

Breakthrough concentration

C sat (mol/mol):

Saturation concentration

c pg (J/mol/K):

Specific heat capacity of the inert gas

c pl (J/mol/K):

Specific heat capacity of liquid adsorbate

c ps (J/g/K):

Heat capacity of the solid phase

c pv (J/mol/K):

Specific heat capacity of gaseous adsorbate

D m (mol/cm/s):

Mass transfer dispersion coefficient

D hg t (W/K/cm):

Heat diffusivity of the gas phase

D hs t (W/K/cm):

Heat diffusivity of the solid phase

E (J/mol):

Adsorption energy of the adsorbate (D-R equation)

g (cm/s2):

Gravitation constant

G (mol/s):

Flow rate of the inert gas

H (cm):

Bed axial dimension (Fig. 2)

h 1 (cm):

Adsorber dimension (Fig. 2)

h b (J/cm2/K):

Solid to gas heat transfer coefficient within the bed

h s1 (J/cm2/K):

Heat transfer coefficient from the solid phase to the gas phase in the central tube(s)

h s2 (J/cm2/K):

Heat transfer coefficient from the solid phase to the gas phase in the annular tube

h wg (J/cm2/K):

Gas to ambient heat transfer coefficient (heat losses)

J (A/cm2):

Current density

J cond (mol/cm2/s):

Condensation flux

k (cm2):

Asorbent bed permeability

k m (mol/cm2/s):

Mass transfer coefficient in the adsorbent bed

k m1 (mol/cm2/s):

Mass transfer coefficient between the adsorbent bed and the gas in the central tube

k m2 (mol/cm2/s):

Mass transfer coefficient between the adsorbent bed and the gas in the annular tube

\(\dot{L}_{\mathit{cond}}\ (\mbox{mol}/\mbox{s})\) :

Flow-rate of the condensed liquid

L cond (mol):

Total amount of the condensed liquid

p (Pa):

Gas pressure

p a (Pa):

Ambient pressure

p c (Pa):

Critical pressure

p 0 (Pa):

Adsorbate saturation pressure

\(\dot{Q}_{el}\) (W):

Rate of heat generation (equal to electric power)

Q el (J):

Heat generation (equal to electric energy)

q (mol/g):

Adsorbate concentration in the solid phase

R g (J/mol/K):

Gas constant

r (cm):

Radial coordinate

r 1 (cm):

Adsorber dimension—radius of the central tube (Fig. 2)

r 2 (cm):

Adsorber dimension (Fig. 2)

r 3 (cm):

Adsorber dimension (Fig. 2)

r 4 (cm):

Adsorber dimension—radius of the adsorber vessel (Fig. 2)

S w (cm2):

Surface are of the outer wall of the adsorber vessel

T a (K):

Ambient temperature

T g (K):

Gas phase temperature

T c (K):

Critical temperature

T R (K):

Referent temperature

T s (K):

Solid phase temperature

T sw (K):

Switch temperature (from desorption to adsorption)

T w (K):

Wall temperature

t (s):

Time

U (V):

Electric potential

U 0 (V):

Supply voltage

u (cm/s):

Radial superficial gas velocity

VP A , VP B , VP C , VP D :

Wagner constants (Wagner equation)

v (cm/s):

Axial superficial gas velocity

W 0 (cm3/g):

Total volume of micropores (D-R equation)

z (cm):

Axial coordinate

α p :

Purification factor

α s :

Separation factor

ΔH ads (J/mol):

Heat of adsorption

ΔH cond (J/mol):

Heat of condensation

ε b :

Bed porosity

μ (Pa/s):

Dynamic viscosity

ρ (Ωcm):

Electric resistivity

ρ 0 (Ωcm):

Electric resistivity at referent temperature T R

ρ g (mol/cm3):

Gas phase density

ρ b (g/cm3):

Adsorbent bed density

ρ A (g/cm3):

Adsorbate density

τ (s):

Time period

A:

Adsorption

b :

Bed

D:

Desorption

g :

Gas

in :

Inlet

out :

Outlet

p :

Previous (initial)

r :

In the radial (r) direction

s :

Solid phase

ct :

Central tube

as :

Annular space

z :

In the axial (z) direction

〈 〉:

Time average value

References

  • Azou, A., Martin, G., Le Cloirec, P.: Improvement of a closed cycle for removal and recovery of dilute gases—application to dry cleaning industry. Environ. Technol. 14, 471–478 (1993)

    CAS  Google Scholar 

  • Baudu, M., Le Cloirec, P., Martin, G.: La regeneration par echauffement intrinseque de charbons actifs utilises pour le traitement d’air. Environ. Technol. 13, 423–435 (1992)

    Article  CAS  Google Scholar 

  • Bathen, D.: Gasphasen—Adsorption in der Umwelttechnik—Stand der Technik und Perspektiven. Chemie Ingenieur Technik 74, 209–216 (2002)

    Article  CAS  Google Scholar 

  • Bathen, D., Schmidt-Traub, H., Stube, J.: Experimenteller Vorgleich verschiedener thermischer Desorptionsverfahren zur Losungsmittel ruckgewinnung. Chemie Ingenieur Technik 69, 132–134 (1997)

    Article  CAS  Google Scholar 

  • Comsol AB: Comsol Documentation, Comsol Multiphysics Users Guide (2005)

  • Dubinin, M.M.: Fundamentals of the theory of adsorption in micropores of carbon adsorbents: characteristics of their adsorption properties and microporous structures. Carbon 27, 457–467 (1989)

    Article  CAS  Google Scholar 

  • Fabuss, B.M., Dubois, W.H.: Carbon adsorption-electrodesorption process. In: 63rd Annual Meeting of the Air Pollution Control Association, St. Louis, MO (1970)

  • Fuentes, J., Pironti, F., Lopez de Ramos, A.L.: Effective thermal conductivity in a radial-flow packed-bed reactor. Int. J. Thermophys. 19, 781–792 (1998)

    Article  CAS  Google Scholar 

  • Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer. Wiley, New York (1996)

    Google Scholar 

  • Lordgooei, M., Carmichael, K.R., Kelly, T.W., Rood, M.J., Larson, S.M.: Activated carbon cloth adsorption—cryogenic system to recover toxic volatile organic compound. Gas Sep. Purif. 10, 123–130 (1996)

    Article  CAS  Google Scholar 

  • Luo, L., Ramirez, D., Rood, M., Grevillot, G., Hay, J., Thurston, D.: Adsorption and electrothermal desorption of organic vapors using activated carbon adsorbents with novel morphologies. Carbon 44, 2715–2723 (2006)

    Article  CAS  Google Scholar 

  • Moon, S.H., Shim, J.W.: A novel process for CO2/CH4 gas separation on activated carbon fibers—electric swing adsorption. J. Colloid Interface Sci. 298, 523–528 (2006)

    Article  CAS  Google Scholar 

  • Petkovska, M., et al.: Temperature-swing gas separation with electrothermal desorption step. Sep. Sci. Technol. 26, 425–444 (1991)

    Article  CAS  Google Scholar 

  • Petkovska, M., Antov, D., Sullivan, P.: Electrothermal desorption in an annular-radial flow-ACFC adsorber-mathematical modeling. Adsorption 11(1 Suppl.), 585–590 (2005)

    Article  Google Scholar 

  • Petkovska, M., Mitrović, M.: Microscopic modeling of electrothermal desorption. Chem. Eng. J. Biochem. Eng. J. 53, 157–165 (1994a)

    Article  CAS  Google Scholar 

  • Petkovska, M., Mitrović, M.: One-dimensional, non-adiabatic, microscopic model of electrothermal desorption process dynamics. Chem. Eng. Res. Des. 72, 713–722 (1994b)

    CAS  Google Scholar 

  • Perry, R.H., Green, D.W.: Perry’s Chemical Engineer’s Handbook, 7th edn. McGraw–Hill, New York (1997)

    Google Scholar 

  • Reid, R.C., Prausnitz, J.M., Poling, B.: The Properties of Gases & Liquids. McGraw–Hill, New York (1987)

    Google Scholar 

  • Rood, M., et al.: Selective sorption and desorption of gases with electrically heated activated carbon fiber cloth element. US Patent No. 6,346,936 B1 (2002)

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Snyder, J.D., Leesch, J.G.: Methyl bromide recovery on activated carbon with repeated adsorption and electrothermal regeneration. Ind. Eng. Chem. Res. 40, 2925–2933 (2001)

    Article  CAS  Google Scholar 

  • Subrenat, A., Le Cloirec, P.: Industrial application of adsorption onto activated carbon cloths and electro-thermal regeneration. J. Environ. Eng. 130, 249–257 (2004)

    Article  CAS  Google Scholar 

  • Subrenat, A.S., Le Cloirec, P.A.: Volatile organic compound (VOC) removal by adsorption onto activated carbon fiber cloth and electrothermal desorption: An industrial application. Chem. Eng. Commun. 193, 478–486 (2006)

    Article  CAS  Google Scholar 

  • Sullivan, P.: Organic vapor recovery using activated carbon fiber cloth and electrothermal desorption. Ph.D. thesis, University of Illinois at Urbana-Champaign (2003)

  • Sullivan, P.D., Rood, M.J., Hay, K.J., Qi, S.: Adsorption and electrothermal desorption of hazardous organic vapors. J. Environ. Eng. 127, 217–223 (2001)

    Article  CAS  Google Scholar 

  • Sullivan, P.D., Rood, M.J., Grevillot, G., Wander, J.D., Hay, K.J.: Activated carbon fiber cloth electrothermal swing adsorption system. Environ. Sci. Technol. 38, 4865–4877 (2004a)

    Article  CAS  Google Scholar 

  • Sullivan, P.D., Rood, M.J., Dombrowski, K.D., Hay, K.J.: Capture of organic vapors using adsorption and electrothermal regeneration. J. Environ. Eng. 130, 258–267 (2004b)

    Article  CAS  Google Scholar 

  • Sushchev, S.V., Shumyatskii, Y.I., Alekhina, M.B.: Steady-state temperature and adsorption distributions in a resistance-heated granular activated-charcoal bed. Theor. Found. Chem. Eng. 36, 141–144 (2002)

    Article  CAS  Google Scholar 

  • Yu, F.D., Luo, L.A., Grevillot, G.: Adsorption isotherms of VOCs onto an activated carbon monolith: experimental measurement and correlation with different models. J. Chem. Eng. Data 47, 467–473 (2002)

    Article  CAS  Google Scholar 

  • Yu, F.D., Luo, L., Grevillot, G.: Electrothermal swing adsorption of toluene on an activated carbon monolith: experiments and parametric theoretical study. Chem. Eng. Proc. 46, 70–81 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menka Petkovska.

Additional information

The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkovska, M., Antov-Bozalo, D., Markovic, A. et al. Multiphysics modeling of electric-swing adsorption system with in-vessel condensation. Adsorption 13, 357–372 (2007). https://doi.org/10.1007/s10450-007-9028-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-007-9028-2

Keywords

Navigation